This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

SYNTHESIS AND BIOLOGICAL ACTIVITIES OF (Z) AND (E) α ETHENYL ACYCLONUCLEOSIDES

N. Redwane; H. B. Lazrek; J. L. Barascut^a; J. L. Imbach^a; J. Balzarini^b; M. Witvrouw^b; E. De Clercq^b ^a Université des Sciences et Techniques Montpellier II, France ^b Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium

Online publication date: 31 July 2001

To cite this Article Redwane, N. , Lazrek, H. B. , Barascut, J. L. , Imbach, J. L. , Balzarini, J. , Witvrouw, M. and De Clercq, E.(2001) 'SYNTHESIS AND BIOLOGICAL ACTIVITIES OF (Z) AND (E) α -ETHENYL ACYCLONUCLEOSIDES', Nucleosides, Nucleotides and Nucleic Acids, 20: 8, 1439 - 1447

To link to this Article: DOI: 10.1081/NCN-100105239 URL: http://dx.doi.org/10.1081/NCN-100105239

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS AND BIOLOGICAL ACTIVITIES OF (Z) AND (E) α -ETHENYL ACYCLONUCLEOSIDES

N. Redwane,¹ H. B. Lazrek,^{1,*} J. L. Barascut,² J. L. Imbach,² J. Balzarini,³ M. Witvrouw,³ and E. De Clercq³

¹Laboratoire de Chimie Bio-Organique, Faculté des Sciences Semlalia, Marrakech, Moroccco ²Laboratoire de Chimie Bio-Organique, Université des Sciences et Techniques Montpellier II, France ³Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium

ABSTRACT

Synthesis of Z and E ethenyl acyclonucleosides (**6a-e** and **7a-e**) via Michael addition of nucleobases with the diethyl acetylenedicarboxylate is described. The structures of compounds have been confirmed by spectral data. New compounds were found to be inactive against DNA and RNA viruses.

The chemical and biological properties of carbocyclic nucleoside analogues have been the subject of intense research during the past decade. ^{1–5} A variety of carbocyclic adenosine analogues are assumed to exert their antiviral action through inhibition of S-adenosylhomocysteine hydrolase (AdoHcy, SAH). In fact, a close correlation has been found between the antiviral activity of various carbocyclic and acyclic adenosine analogues and their inhibitory effect on the cell-free SAH hydrolase, and they are not susceptible to degradation *in vitro* by nucleases and phosphorylases. For instance, unsaturated analogues 1–3 (Figure 1) were found to be substrates of adenosine deaminase.

^{*}Corresponding author.

In view of the above synthetic and biological aspects, and as a part of continuing studies, ^{8–10} we report here the synthesis of a new group of unsaturated analogues, *trans* and *cis* alkenes **6a-e** and **7a-e** (Scheme 1), respectively. These products are mainly characterised by a nucleobase linked to a double bond. The strategy envisioned to reach this goal involved using a Michael addition, which is one of the most important methods for creating carbon–carbon¹¹ or nitrogen–carbon^{3,12,13} bonds to give functionalized organic compounds. The reaction of NH heterocycles (pyrazole, indazole, triazole . . .) with acetylenic esters having electron withdrawing groups such COOR, CN and SOOR has been studied. ^{14–16} This type of reaction proceeds initially via nucleophilic addition to an acetylenic bond to form the Michael adduct.

We have applied this strategy to both purine and pyrimidine bases. The nucleobase anions **5a-e** were generated *in situ* by treatment with potassium carbonate in 1,4-dioxane or in DMF and allowed to react with diethyl acetylenedicarboxylate **4** to give, after hydrolytic work up, a mixture of the geometrical isomers **6a-e** and **7a-e** with the N₁, N₃ bisalkylated compounds as side products **8a-b** (Scheme 1).

BH + EtO₂C-C
$$\equiv$$
C-CO₂Et \longrightarrow B \longrightarrow CO₂Et \longrightarrow H + 8 a-b

5 a-e 4 '6 a-e 7 a-e

a: BH = Uracil, b: BH =Thymine, c: BH = Cytosine, d: BH = Adenine, e: BH = N-Ac-Guanine

Scheme 1.

For instance, the reaction of uracil **5a** at room temperature or at 70 °C with **4** led to a mixture of **6a**, **7a** and **8a** (N₁, N₃ bis alkylated) (Table 1). An excess of K₂CO₃ should be avoided because it causes a retro-Michael reaction.

In order to find a method for determining the configuration of the isomers **6a-e** and **7a-e**, the use of NMR spectroscopy appeared to be the most promising. A study of the NMR spectra was made paying close attention to the chemical shifts of the $H_{3'}$ vinylic proton, as well as solvent-induced shifts (Table 2). The proton resonance values of $H_{3'}$ (Z) in both solvent (CDCl₃ or DMSO:d₆) were considerably higher than the corre-

Base	Solvent	Time (h)	T°C	Yield %	Е %	Z %
Uracil	1,4-dioxane	24	25	65 ^a	45	55
		1,5	70	75 ^b	15	85
Thymine	1,4-dioxane	18	25	65 ^a	70	30
•		1	70	75 ^b	45	55
Cytosine	DMF	1	25	70	60	40
Adenine	DMF	1	25	65	66	34
NAcGuanine	DMF	1	25	50	50	50

Table 1. Reaction Conditions for N-alkylation of Purine and Pyrimidine with 4

a: bisalkylated N₁N₃ 10%, b: bisalkylated N₁N₃ 15%.

sponding $H_{3'}$ (*E*). It would be expected that the significant diamagnetic anisotropy of ester carbonyls would lead to a greater deshielding of the vinyl proton. ^{17–19} In this respect, the spectra are quite similar to those of other unsaturated derivatives of nucleic acid bases which contain a double bond with the heterocyclic moiety. ⁷

The difference in the ratio of the maleate-fumarate isomers obtained under a different set of time, solvent and temperature conditions (Table 1), suggests that the maleate adduct (E) which is kinetically controlled process isomerizes to the fumarate (Z), which is thermodynamically more stable. When the reaction time is shorter (1-3 hours) the isomer E is the major product. With longer reaction times (12 hours), the isomer E is becoming the major product. Some experiments were performed to try to understand these results. When the isomer E was reacted with potassium carbonate in DMF (Table 3) at room temperature, a mixture of E and E was obtained (Scheme 2). The equilibrium ratio E isomers was determined by E NMR after TLC and showed no further changes in isomer composition.

The results (Table 3) appear to be in agreement with some results previously reported. ^{3,19}

Table 2. Chemical Shift of Vinylic Proton H_{3'} in CDCl₃ and DMSO-d₆

	Solvent	Uracil	Thymine	Cytosine	Adenine	NacGuanine
$ \begin{array}{c} H_{3'}(Z) \\ H_{3'}(Z) \end{array} $	CDCl ₃	7.10	7.05	6.85	7.35	8.00
	CDCl ₃	6.30	6.25	6.15	7.25	7.20
$\begin{array}{c} \operatorname{H}_{3'}(Z) \\ \operatorname{H}_{3'}(Z) \end{array}$	DMSO-d6	6.95	6.90	6.65	7.20	7.25
	DMSO-d6	6.80	6.65	6.50	7.15	7.15

Biological Activity

Compounds **6a-e** and **7a-e** were evaluated for their activities against human immunodeficiency virus type 1 (HIV-1) (HTLV-III_B/LAI) and HIV-2 (LAV-2_{ROD}) in human T-lymphocyte (CEM) cells, and against herpes simplex virus type 1 (HSV-1) (strain KOS), thymidine kinase-deficient (TK $^-$) HSV-1 (strain B2006), herpes simplex virus type 2 (HSV-2) (strain G), vaccinia virus and vesicular stomatitis virus in human embryonic skin-muscle (ESM) fibroblasts. In E6SM cells, no toxicity (as assessed by microscopically visible alteration of normal cell morphology) and no antiviral activity were observed at compound concentrations up to 400 µg/ml. Compounds **6a-e**, **7a-e** and **8a-b** proved to be toxic to CEM cells at a 50% cytotoxic concentration (CC₅₀) of 0.8–1 µg/ml. No antiviral activity was observed at concentrations up to 0.8–1 µg/ml (data not shown).

These compounds were subjected to the NCI *in vitro* disease-oriented human cells screening panel assay. About 60 cell lines of nine tumor subpanels (I, leukemia; II, non-small cell lung cancer; III, colon cancer; IV, CNS cancer, V; melonoma, VI; ovarian cancer; VII, renal cancer; VIII, prostate cancer; IX, breast cancer) were incubated with five concentrations (0.01, 0.1, 1.0, 10 and $100\,\mu\text{M}$) for each compound and were used to create log concentration -% growth inhibition curves. Some of the test compounds (data not shown) showed antineoplastic activity at concentrations less than $100\,\mu\text{M}$.

EXPERIMENTAL

All melting points were determined with a Büchi apparatus and are uncorrected. Ultra-Violet spectra were recorded with a CARY 219 spectro-photometer. The 1H NMR spectra were recorded with a Bruker AC 250 Spectrometer. Chemical shifts are reported in parts per million (δ \square ppm)

Compounds	Solvent	Time (h)	T°C	E (%)	Z (%)
7a	DMF	4	25	10	90
	1,4-dioxane	1	70	20	80
6b,7b*	DMF	4	25	20	80
•	1,4-dioxane	1	70	25	75
7c	DMF	48	25	50	50
7d	DMF	24	25	50	50
7e	DMF	48	25	50	50

Table 3. Isomerization of the E Isomers

^{*:} starting material : mixture E/Z = 70/30.

using internal TMS standard. Fast-atom bombardment mass spectra (FAB-MS) were recorded in the positive or negative ion mode on a JEOL DX 300 mass spectrometer. Elemental analyses were determined by the "Service de microanalyse du CNRS, Division de Vernaison, France". Thin layer chromatography (T.L.C) was performed on plates of kieselgel 60 F254 (Merck). Column chromatography was performed on silica gel (0.063–0.2 mm Merck).

GENERAL PROCEDURE

A mixture of nucleobase (4.45 mmol), potassium carbonate (2.22 mmol) in 1,4-dioxane or DMF (50 ml) was stirred at room temperature for 15 min. Diethyl acetylenedicarboxylate (4.45 mmol) was then added and the solution was stirred at room temperature for different times (Table 1). The solid was filtered off and the filtrate was evaporated. The residue was chromatographed on a silica gel column.

(Z)-Diethyl 2-(Uracil-1-yl)-but-2-enedioate (6a)

mp: 114–116 °C (Ether); Rf: 0.55 (CH₂Cl₂/MeOH:90/10); UV (MeOH) λ_{max} 255 nm (ε = 12 600); FAB-MS, 283 (M+H); ¹H NMR (CDCl₃): 9.10 (s, 1H, NH-3); 7.05 (d, 1H, H₆; J_{6,5} = 7.9 Hz); 7.05 (s, 1H, H₃); 5.80 (d, 1H, H₅, J_{6,5} = 7.9 Hz); 4.20 (m, 4H, CH₃CH₂O); 1.30 (m, 6H, CH₃CH₂O); Anal. Calc. for: C₁₂H₁₄O₆N₂: C, 51.06; H, $\overline{5.00}$; N, 9.92; Found; \overline{C} , $\overline{5}$ 1.10; H, 4.85; N, 9.90.

(E)-Diethyl 2-(Uracil-1-yl)-but-2-enedioate (7a)

mp: 135–137 °C (Ether); Rf: 0.54 (CH₂Cl₂/MeOH: 90/10); UV (MeOH) λ_{max} 271.6 nm (ε = 11 000); FAB-MS, 283 (M+H); ¹H NMR (CDCl₃): 9.30 (s, 1H, NH-3); 7.30 (d, 1H, H₆; J_{6,5} = 8.1 Hz); 6.3 (s, 1H, H₃′); 5.85 (d, 1H, H₅; J_{6,5} = 8.1 Hz); 4.30 (m, 4H, CH₃CH₂O); 1.30 (m, 6H, CH₃CH₂O); Anal. Calc. for: C₁₂H₁₄O₆N₂; C, 51.06; H, 5.00; N, 9.92; Found; \overline{C} , 51.12; H, 5.01; N, 9.80.

(E, Z)-Diethyl 2-(Thymin-1-yl)-but-2-enedioate (6b, 7b)

mp: 128-130 °C (Ether); Rf: 0.57 (CH₂Cl₂/MeOH: 90/10);UV (MeOH) λ_{max} 272 nm (ε = 12500); FAB-MS, 297 (M+H) ¹H NMR (CDCl₃): 9.40 (s, 1H, NH-3, (E, Z)); 7.05 (s, 1H, H₃, Z); 7.10 (m, 1H, H₆, E); 6.95 (m, 1H, H₆, Z); 6.25 (s, 1H, H₃, E); 4.25 (m, 8H, CH₃CH₂O, (E, Z)); 1.95 (s, 6H, CH₃, (E, Z)); 1.30 (m, 12H, CH₃CH₂O, (E, Z)); Anal. Calc. for: C₁₃H₁₆O₆N₂; C, 52.70; H, 5.44, N, 9.45; Found; C, 52.74; H, 5.46; N, 9.51.

(Z)-Diethyl 2-(Cytosin-1-yl)-but-2-enedioate (6c)

mp 152–154 °C (Ether); Rf: 0.33 (CH₂Cl₂/MeOH: 90/10); UV (MeOH) λ_{max} 288 nm (ε = 12 400); FAB-MS, 282 (M+H); ¹H NMR (CDCl₃): 8.70 (s, 2H, NH2); 7.10 (d, 1H, H₆, J_{6,5} = 7.4 Hz); 6.85 (s, 1H, H₃′); 5.90 (d, 1H, H₅, J_{6,5} = 7.4 Hz); 4.25 (m, 4H, CH₃CH₂O); 1.25 (m, 6H, CH₃CH₂O); Anal. Calc. for: C₁₂H₁₅O₅N₃; C, 51.24; H, $\overline{5.37}$; N, 14.93; Found; \overline{C} , $\overline{5}$ 1.31; H, 5.40; N, 14.82.

(E)-Diethyl 2-(Cytosin-1-yl)-but-2-enedioate (7c)

mp: 165-167 °C (Ether); Rf: 0.30 (CH₂Cl₂/MeOH: 90/10); UV (MeOH) λ_{max} 284 nm ($\varepsilon = 10\,800$); FAB-MS, 282 (M+H); ¹H NMR (CDCl₃): 8.70 (s, 2H, NH₂); 7.25 (d, 1H, H₆, J_{6,5}=7.5 HZ); 6.15 (s, 1H, H₃); 6.00 (d, 1H, H₅, J_{6,5}=7.5 HZ); 4.25 (m, 4H, CH₃CH₂O); 1.25 (m, 6H, CH₃CH₂O); Anal. Calc. for: C₁₂H₁₅O₅N₃; C, 51.24; H, 5.37; N, 14.93; Found; C, 51.11; H, 5.47, N, 14.83.

(Z)-Diethyl 2-(Adenin-9-yl)-but-2-enedioate (6d)

mp: 204–206 °C (Ether); Rf: 0.50 (CH₂Cl₂/MeOH: 90/10); UV (MeOH) λ_{max} 254 nm (ϵ = 38 400); FAB-MS, 306 (M+H); ¹H NMR (CDCl₃): 8.45 (s, 1H, H₈); 7.90 (s, 1H, H₂); 7.35 (s, 1H, H₃'); 5.65 (s, 2H, NH₂); 4.48 (q, 2H, CH₃CH₂O, J=7.1 Hz); 4.28 (q, 2H, CH₃CH₂O,

J = 7.1 Hz); 1.34 (m, 6H, CH_3CH_2O); Anal. Calc. for: $C_{13}H_{15}O_4N_5$; C, 51.14; H, 4.95; N, 22.94; Found; C, 51.07; H, 4.93; N, 22.91.

(E)-Diethyl 2-(Adenin-9-yl)-but-2-enedioate (7d)

mp 140–142 °C (Ether); Rf: 0.47 (CH₂Cl₂/MeOH: 90/10); UV (MeOH) λ_{max} 255 nm (ε = 19 600); FAB-MS, 306 (M+H); ¹H NMR (CDCl₃): 8.33 (s, 1H, H₈); 7.90 (s, 1H, H₂); 7.35 (s, 1H, H₃); 5.88 (s, 2H, NH₂); 4.36 (q, 2H, CH₃CH₂O, J=7.1 Hz); 4.07 (q, 2H, CH₃CH₂O, J=7.1 Hz); 1.32 (t, 3H, CH₃CH₂O; J=7.1 Hz); 1.08 (t, 3H, CH₃CH₂O; J=7.1 Hz); Anal. Calc. for: C₁₃H₁₅O₄N₅;C, 51.14; H, 4.95; N, 22.94; Found; C, 51.10; H, 4.98; N, 22.92.

(Z)-Diethyl 2-(N-Acetylguanin-9-yl)-but-2-enedioate (6e)

mp: 198–200 °C (MeOH); Rf: 0.43 (CH₂Cl₂/MeOH : 90/10); UV (MeOH) λ_{max} 280 nm (ε = 13 700); λ_{max} 251 nm (ε = 23 144); FAB-MS, 364 (M+H); ¹H NMR (CDCl₃): 12.30 (s, 1H, NH-Ac); 11.15 (s, 1H, NH-1); 8.20 (s, 1H, H₈); 7.80 (s, 1H, H₃′); 4.20 (m, 4H, CH₃CH₂O); 2.20 (s, 3H, CH₃CO); 1.40 (m, 6H, CH₃CH₂O); Anal. Calc. for: C₁₅H₁₇O₆N₅; C, 49.59; H, 4.72; N, 19.28; Found; C, 49.38, H, 4.73; N, 19.11.

(E)-Diethyl 2-(N-Acetylguanin-9-yl)-but-2-enedioate (7e)

Rf: 0.41 (CH₂Cl₂/MeOH: 90/10); UV (MeOH) λ_{max} 282 nm (shoulder) λ_{max} 248 (ϵ = 9200); FAB-MS, 364 (M+H); ¹H NMR (CDCl₃): 12.30 (s, 1H, NH-Ac); 11.15 (s, 1H, NH-1); 8.00 (s, 1H, H₈); 7.10 (s, 1H, H_{3'}); 4.20 (m, 4H, CH₃CH₂O); 2.75 (s, 3H, CH₃CO); 1.25 (m, 6H, CH₃CH₂O); Anal. Calc. for: C₁₅H₁₇O₆N₅; C, 49.58; H, 4.71; N, 19.27; Found; C, 49.18, H, 4.70; N, 19.20.

1, 3-Bis(diethylbut-2-enedioate-2-yl)uracil (8a)

Rf: 0.71 (CH₂Cl₂/MeOH: 95/5); UV (MEOH) λ_{max} 262 nm (ϵ = 9 200); FAB-MS, 453 (M+H); ¹H NMR (DMSO-d6): 7,8–8 (m, 1H, H₆); 7–7.15 (m, 2H, H₃′); 5.95–6.05 (m, 1H, H₅); 4,15 (m, 8H, CH₃CH₂O); 1,3 (m, 12H, CH₃CH₂O); Anal. Calc. for: C₂₀H₂₄O₁₀N₂; C, 53.10; H, $\overline{5.35}$; N, 6.19; Found; \overline{C} , $\overline{5}$ 3.17; H, 5.34; N, 5.97.

1, 3-Bis(diethylbut-2-enedioate-2-yI)thymine (8b)

Rf: 0.77 (CH₂Cl₂/MeOH: 95/5) UV (MeOH) λ_{max} 264 nm (ϵ = 13 500); FAB-MS, 467 (M+H); ₁H NMR (CDCl₃): 7.16 and 6.95 (2s, 2H, H₆); 7.02

and 6.30 (2s, 2H, $H_{3'}$); 4.30 (m, 8H, CH_3CH_2O); 2.00 (s, 3H, CH_3); 1.30 (m, 12H, CH_3CH_2O); Anal. Calc. for: $C_{21}H_{26}O_{10}N_2$;C, 54.05; H, 5.62; N, 6.01; Found; \overline{C} , 54.14; H, 5.60; N, 5.97.

ANTIVIRAL ASSAY PROCEDURES

Cytotoxicity measurements were based on either microscopic examination of alteration of normal cell morphology, or inhibition of cell growth. The cell lines used for both the antiviral activity and cytotoxicity assays were CEM cells and human embryonic skin-muscle (E₆SM) fibroblasts. The different compounds were evaluated for their antiviral activity according to well-established procedures. The origin of the viruses [human immunodeficiency virus type 1 (HIV-1) (strain HTLV-III_B/LAI), HIV-2 (LAV-2_{ROD}), herpes simplex virus type 1 (HSV-1) (strain KOS), thymidine kinase-deficient (TK ⁻) HSV-1 (strain B2006), herpes simplex virus type 2 (HSV-2) (strain G), vaccinia virus and vesicular stomatitis virus] has been described previously. ^{22,23}

ANTITUMOR SCREENING

Compounds **6a-e**, **7a-e** and **8a-e** were subjected to the NCI in vitro screening panel assay as described elswhere. ^{20,21}

ACKNOWLEDGMENTS

This work was supported in part by the Biomedical Research Programme of the European Commission and by the "Cooperation Interuniversitaire France/Maroc (AI 96/1141)". We thank the CNR (Maroc) and the DFG (Germany) for supporting this work. The authors would like to express their gratitude and thanks to V. L. Narayanan, Chief, Drug Synthesis and Chemistry Branch and the staff of the antitumor screening division, National Cancer Institute, Bethesda, MD, for carrying out the *in vitro* antitumor testing. We thank Mrs. A. Absillis, Mrs. F. De Meyer and Mrs. A. Van Lierde for excellent technical assistance.

REFERENCES

- 1. Agrofoglio, L.; Suhas, E.; Ferase, A.; Condom, R.; Challand, R.; Earl, R.A.; Guedj, R. Tetrahedron **1994**, *50*, 10611–10670.
- 2. Peterson, M.L.; Vince, R.J. Med. Chem. 1990, 33, 1214-1219.
- 3. Perbost, M.; Lucas, M.; Chavis, C.; Imbach, J.L. Nucleosides & Nucleotides **1992**, *11*, 1489–1505.

- 4. Johnson, F.; Pillai, K.M.R.; Grollman, A.P.; Tseng, L.; Takeshita, M. J. Med. Chem. **1984**, *27*, 954–958.
- 5. Phadtare, S.; Kessel, D.; Corbett, T.M.; Renis, H.E.; Court, B.A.; Zemlicka, J. J. Med. Chem. **1991**, *34*, 421–429 and reference cited there in.
- 6. De Clercq, E. Biochem. Pharmacol. **1987**, *36*, 2567–2575.
- 7. Ramachaudra, V.J.; Qixu,Ze.; Ksebati, M.B.; Kessel, D.; Corbett, T.H.; Drach, J.C.; Zemlicka, J. J. Chem. Soc. Perkin Trans 1 **1994**; 1089–1098.
- Lazrek, H.B.; Khaider, H.; Rochdi, A.; Barascut, J.L.; Imnbach, J.L. Tetrahedron Lett. 1996, 37, 4701–4704.
- 9. Lazrek, H.B.; Rochdi A.; Khaider H.; Barascut, J.L.; Imbach, J.L.; De Clercq E. Tetrahedron **1998**, *54*, 3807–3816.
- Lazrek, H.B.; Redwane, N.; Rochdi, A.; Barascut, J.L.; Imbach J.L.;
 De Clercq E. Nucleosides & Nucleotides 1995, 14 (3-5), 353-356.
- 11. Cary, F.A.; Sumdberg, R.J. Advanced organic chemistry; Part A, 3rd ed; Plenum press; New York, 1990; p.39.
- 12. Scheiner, L.; Geer, A.; Bucknor, A.M.; Imbach, J.L.; Schinazi, R.F. J. Med. chem **1989**, *32*, 73–76.
- 13. Jones J.B.; Young, J.M. Can J Chem **1970**, 48, 1566–1573.
- 14. Dikstein, J.I.; Miller, S.I. in: *The chemistry of the C-C triple bond part 2*; Patai, S; ed.; John Wiley and Sons Inc.: New York, 1978, p 813
- 15. Acheson, R.M.; Foxton, M.W. J. Chem; Soc. C. **1968**, 389–391.
- 16. Elguero, J.; Dc Ia Hoz, A.; Pardo, C. J. Chem. Soc. Perkin Trans II **1985**, 427–431.
- 17. Truce, W.E.; Brady, D.G. J. Org. Chem. **1966**, *31*, 3543–3550.
- 18. Dolfini, J.E. J. Org. Chem. **1965**, *30*, 1298–1300.
- 19. Magnus, P.D. Tetrahedron 1977, 33, 2019–2045.
- 20. Grever, M.R.; Schepartz, S.A.; Chabner, B.A. Seminar oncology **1992**, *19*, 622–653.
- 21. Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Woiff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. J. Natl. Cancer Inst. **1991**, *83*, 757–776.
- 22. Dc Clercq, E.; Descamps, J.; Varhelest, G.; Walker, R.; Jones, A.S; Torrence, P.F.; Shugar, D.J. Infect. Dis. **1980**, *141*, 563–574.
- 23. Witvrouw, M.; Balzarini, J.; Pannecouque, C.; Ihaumeer-Laulloo, S.; Este, J.; Schols, D.; Cherepanov, P.; Schmit, J.-C; Debyser, Z.; Vandamme, A.-M.; Desmyter, J. De Clercq, E. Antimicrob. Agents. Chemother. **1997**, *41*, 262–268.

Received June 20, 2000 Accepted December 30, 2000